Next-generation experiments are poised to explore lepton-number violation, discern the neutrino
mass hierarchy, understand the particle nature of dark matter, and answer other fundamental
questions aimed at testing the validity and extent of the Standard Model. Nuclei are used for
these high-precision tests of the Standard Model and for searches of physics Beyond the
Standard Model....
Long-baseline neutrino oscillation experiments are sensitive to the parameters governing nu_1-nu_3 and nu_2-nu_3 mixing, including the neutrino mass ordering and a potentially CP violating phase in the PMNS matrix. These measurements are of particular interest because observation of CP violation in the lepton sector could be an important step in understanding the origin of the baryon asymmetry...
Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment currently under construction in Jiangmen City in South China. The central detector (CD) is a 20 kton liquid scintillator (LS) neutrino target housed in an acrylic sphere of 35.4m in diameter, submersed in a cylindrical water Cherenkov veto detector of 43.5m in diameter and depth. The JUNO...
I provide an overview of sterile neutrinos, including motivations - why do we think they exist and what are they good for - and current constraints/hints.
Neutrino sources with energy of $\mathcal{O}(10$ MeV) are an invaluable tool for studying neutrino interactions with nuclei - previously enabling the first measurement of coherent elastic scattering. Neutrinos (and potentially dark matter) in this energy range will also excite nuclei, giving us another physics channel to study. In this work we consider the inelastic nuclear scattering of...
Project 8 is a tritium endpoint neutrino mass experiment utilizing a phased program to achieve sensitivity to the full range of neutrino masses allowed by the inverted mass hierarchy. The Cyclotron Radiation Emission Spectroscopy (CRES) technique is employed to measure the differential energy spectrum of relativistic decay electrons with high precision. In this talk, I will present the recent...
We consider BSM models in which neutrinos couple to Heavy Neutral Leptons (HNLs). In these models, an incoming flux of atmospheric neutrinos can scatter off of nuclei in the Earth, producing a flux of HNLs (upscattering) with energies ranging from O(10 MeV) to O(10 GeV). If an HNL decays within a neutrino detector, it can produce a visible signal, appearing as an excess of neutrino...
Tritium has been the isotope of choice for measurements of the neutrino mass and planned detection of the relic neutrino background. The low mass of 3-H leads to large recoil energy of the nucleus. This has emerged as a limiting factor for both measurements. We propose to use 241-Pu as an alternative. The recoil is 80x smaller and it has similar decay energy and lifetime as 3-H. We evaluate...
The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) aims to detect the coherent elastic scattering of reactor antineutrinos (CEvNS) using fully depleted high-resistivity charge coupled devices (CCDs). The detector is located at a distance of 30 m from the core of the 3.8 GW Angra-2 nuclear reactor in Rio de Janeiro, Brazil. With an active mass of 50 g, a readout noise better than 2...
MicroBooNE is an 85-tonne active mass liquid argon time projection chamber (LArTPC) at Fermilab. It has excellent calorimetric, spatial and energy resolution and is exposed to two neutrino beams, which make it a powerful detector not just for neutrino physics, but also for Beyond the Standard Model (BSM) physics. The experiment has competitive sensitivity to heavy neutral leptons possibly...
The observation of neutrinoless double beta decay would have far-reaching consequences for particle physics, as it would be a clear manifestation of lepton number violation and it would give a hint on the origin of neutrino masses. While searching for neutrinoless double beta decay, a significant amount of the two-neutrino double beta decay data has been collected by a number of experiments....
Coherent elastic neutrino nucleus scattering (CEvNS) is a well-predicted Standard Model process only recently observed for the first time. Its precise study could reveal non-standard neutrino properties and open a window to search for physics beyond the Standard Model.
NUCLEUS is a CEvNS experiment conceived for the detection of neutrinos from nuclear reactors with unprecedented precision at...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric 0νββ experiment to reach the one-tonne mass scale. The detector, located underground at the Laboratori Nazionali del Gran Sasso in Italy, consists of 988 TeO2 crystals arranged in a compact cylindrical structure of 19 towers, operating at a base temperature of about 10 mK. After beginning its first physics...
The COHERENT collaboration operates an array of detectors at the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino nucleus scattering (CEvNS) and to search for dark matter. The 1.4 MW SNS pulsed proton beam produces an intense neutrino flux and may be producing dark matter particles. Our low-energy-threshould detectors sited in the low-background "Neutrino Alley"...
With its excellent energy resolution and ultra-low backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable several searches for beyond the Standard Model physics ranging from the primary neutrinoless double beta decay search to searches for several classes of exotic dark matter models. Many of these dark matter models predict a peaked signature in an energy...
In the presence of transition magnetic moments between active and sterile neutrinos, the search for a Primakoff upscattering process at Coherent Elastic Neutrino Nucleus Scattering (CEvNS) experiments provide stringent constraints on the neutrino magnetic moment. We show that a radiative upscattering process with a photon emitted in the final state can provide a novel experimental mode to...
nEXO is a next-generation search for the neutrinoless double beta decay (0𝜈𝛽𝛽) of 136Xe using a 5-tonne, monolithic liquid xenon time projection chamber (TPC). To optimize the event reconstruction and energy resolution of the TPC, calibrations are needed to map the position- and time- dependent detector response. We will describe recent work studying the feasibility of neutron-activated 127Xe...
In 2002 Ward presented [1] a simple extension of the SM, an isospin symmetry breaking (ISB) model of spin-dependent electroweak (EW), strong and gravitational radiation gauge fields mixing with corresponding complimentary fields. The extended phenomenological model has been improved by further development identifying the complimentary fields as Yang-Mills (Y-M) fields and the use of...
The LEGEND experimental program will operate in two phases to search for neutrinoless double-beta decay ($0\nu\beta\beta$). The first (second) stage will employ 200 (1000) kg of $^{76}$Ge semiconductor detectors to achieve a half-life sensitivity of 10$^{27}$ (10$^{28}$) years. In this study, we present a data-driven approach to remove electronic noise, cross-talk, and non-physical events...
In experiments that look for dark matter particles or coherent neutrino nucleus scattering, we often measure the charge signal produced from the ionization of the nuclear recoil events. Nuclear recoils generate less ionization than electron recoils of the same energies, and the relative ratio, defined as the ionization yield, is crucial to calibrating the detectors. We performed a measurement...
The ${\rm M{\scriptsize AJORANA}~D{\scriptsize EMONSTRATOR}}$ is a neutrinoless double beta decay ($0\nu\beta\beta$) experiment consisting of ~30 kg of germanium detectors enriched to 88% in $^{76}\rm{Ge}$ and ~14 kg of natural germanium detectors. The detectors are divided between two cryostats and surrounded by a graded passive shield. The ${\rm{D\scriptsize EMONSTRATOR}}$ achieved one of...
The Large Enriched Germanium Experiment for Neutrinoless double-beta Decay (LEGEND) collaboration plans to search for neutrinoless double-beta ($0\nu\beta\beta$) decay in ${}^{76}$Ge using modular arrays of germanium detectors enriched in the isotope. $0\nu\beta\beta$ candidate events happen at a single site in the germanium detector. Pulse shape simulations to model the movement of charge...
We challenge the traditional wisdom that cosmological (big bang relic) neutrinos can only be hot dark matter. We provide a critical review of the concepts, derivations and arguments in foundational papers, books and recent publications that led respected researchers to proclaim that “[dark matter] cannot be neutrinos”. We then provide the physics resulting in relic neutrino’s significant power...
In this talk I will review our current theoretical understanding of the dynamics of neutron star mergers, focusing on the impact of the dense matter equation of state and of neutrino radiation. I will discuss the current progress and future potential of multi-messenger observations to constrain the properties of extreme matter and the r-process nucleosynthesis yields of mergers. Finally, I...
We can't understand core-collapse supernovae without understanding neutrinos, but we can't understand neutrinos without understanding core-collapse supernovae. What to do? I discuss new ways forward.
The fundamental nature of dark matter and neutrinos affect our Universe in ways that we can probe through its evolution over cosmic scales of distance and time. From precision measurements of the Cosmic Microwave Background radiation at the start of the 21st century through to the first sets of precision weak lensing measurements almost twenty years later, we are pursuing a rapidly expanding...
The Cosmic Microwave Background (CMB) is a powerful tool for understanding cosmology and particle physics. At large angular scales, the CMB images the primordial universe providing a window into physics that preceded the hot radiation-dominated era. The CMB also images acoustic oscillations in our early universe exquisitely tracing our thermal history and the corresponding evolution of our...
Cosmological observations conclusively tell us two things about dark matter: it composes 26% of the current energy density of the Universe, and it lies beyond the Standard Model of particle physics. These inferences rely exclusively on dark matter's gravitational influence; all other efforts to detect dark matter have only constrained its interactions with the Standard Model. Fortunately, dark...
In this talk I will review the current experimental status of dark matter searches in the MeV scale. Will describe the existing technologies probing this regime using electron recoil and discuss prospects for future projects.
Relativistic protons and electrons in the extremely powerful jets of blazars may boost via elastic collisions the dark matter particles in the surroundings of the source to high energies. The blazar-boosted dark matter flux at Earth may be sizeable, larger than the flux associated with the analogous process of DM boosted by galactic cosmic rays, and relevant to access direct detection for dark...
We discuss neutrinoless double beta decay ($0\nu\beta\beta$) mediated by the lightest neutralino of arbitrary mass in the minimal supersymmetric Standard Model (MSSM) under the presence of R-parity violating trilinear interactions. In this scenario, the exchange of the lightest neutralino can result in $0\nu\beta\beta$ decay of either long-range or short-range behaviour, depending on the...
There are several complementary searches for dark matter interacting with nuclei including underground direct detection experiments that use heavy nuclei, spherical detectors that make use of light nuclei, and cosmological probes that directly constrain dark matter-proton interactions. For dark matter with a mass $m_\chi > O(1)$ GeV, i.e., a weakly interacting massive particle (WIMP), the...
Next-generation searches for neutrinoless double beta (0νββ) decay plan to make use of several isotopes, including 76Ge, 100Mo, and 136Xe. We explore the effects of observations in multiple isotopes on the joint inference of the standard mass mechanism (light neutrino exchange) and an exotic short-range 0νββ mechanism. We also study the role that uncertainties in the nuclear matrix elements...
Nuclear matrix elements (NME) for neutrinoless double beta decays (DBDs) are required for neutrino studies beyond the standard model, and experimental information on the NMEs are crucial for phenomenological model evaluations for the NMEs. Spin dipole (SD) components are one of major ones of the NME. The SD giant resonance energy and the SD strength in the intermediate nucleus have been...
A precise understanding of WIMP discovery limits is indeed required for a correct interpretation of forthcoming data from multi-ton dark matter direct detection experiments. In this talk we will reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process by the COHERENT...
Despite great efforts to directly detect dark matter (DM), experiments so far have found no evidence. The sensitivity of direct detection of DM approaches the so-called neutrino floor below which it is hard to disentangle the DM candidate from the background neutrino. One of the promising methods of overcoming this barrier is to utilize the directional signature that both neutrino- and...
The ${\rm M{\small AJORANA}~D{\small EMONSTRATOR}}$ is searching for neutrinoless double-beta decay ($0\nu\beta\beta$) in $^{76}$Ge, a beyond the standard model process that would prove the neutrino is a Majorana fermion if discovered.
The experiment has completed operation of a modular array of 44 kg of high purity germanium detectors, in the p-type point contact (PPC), inverted-coaxial...
The GERDA experiment searched for the lepton-number-violating neutrinoless double-beta decay ($0\nu\beta\beta$) of $^{76}$Ge. The discovery of the $0\nu\beta\beta$ decay would have profound implications for particle physics and cosmology. By operating high-purity germanium (HPGe) detectors enriched in $^{76}$Ge immersed in liquid argon (LAr), the GERDA experiment achieved one of the most...
The LUX-ZEPLIN (LZ) experiment is a world-leading dark matter direct detector, which, in its full data-taking period of 1000 live days, will be sensitive to a spin-independent WIMP-nucleon cross section of 1.4 x 10^-48 cm^2 (for a 40 GeV WIMP), and will have the ability to detect other rare processes. The experiment has an active mass of 7 tonnes of xenon, is located at the Sanford Underground...
Though widely accepted as the best explanation for many astrophysical and cosmological observations, Dark Matter particles have yet to be directly observed in a terrestrial detector. The XENON collaboration has long pioneered developments both in the general field of liquid xenon time projection chambers and in world leading searches for Dark Matter. Our collaboration has published world...
SNO+ is a large-scale multi-purpose neutrino detector, located 2 km underground at SNOLAB, Canada. The primary aim of the experiment is to search for neutrinoless double-beta decay (0νββ), along with a variety of other physics programs including detection of solar, reactor, and supernova neutrinos, measuring the geoneutrino flux, and searching for invisible nucleon decay. The experiment has...
AMoRE (Advanced Mo-based Rare process Experiment) is an international collaboration aiming to search for the neutrinoless double beta (0n bb) decay of 100Mo using molybdate scintillating crystals with metallic magnetic calorimeters as low-temperature sensors. The data of the second phase experiment, AMoRE-I, with ~3 kg of 100Mo in the scintillating crystals, can be used to search for 0n bb...
The DAMIC experiment at SNOLAB uses thick, fully-depleted, scientific
grade charge-coupled devices (CCDs) to search for the interactions
between proposed dark matter particles in the galactic halo and the
ordinary silicon atoms in the detector. DAMIC CCDs operate with an
extremely low instrument noise and dark current, making them
particularly sensitive to ionization signals expected from...
In the past decades, numerous experiments have emerged to unveil the nature of dark matter (DM), one of the most discussed open questions in modern particle physics. Among them, the CRESST-III experiment, located at LNGS, operates scintillating crystals as cryogenic phonon detectors and reaches by that one of the strongest exclusion limits on the DM-nucleon interaction cross section, in the...
The NEXT experiment searches for Majorana neutrinos through neutrinoless double beta decay (0𝜈𝛽𝛽) using a high pressure gaseous xenon time projection chamber. This technology offers excellent energy resolution and tracking capabilities, providing a competitive option for the tonne scale level necessary to fully cover the Majorana mass range corresponding to the inverted hierarchy of neutrino...
Dark matter detection experiments are closing in on sensitivity to astrophysical neutrinos from the Sun and the atmosphere. I will discuss the prospects for detecting these neutrinos, and for using this detection to extract information on the properties of neutrinos and their sources. I will discuss methods that can be used to differentiate neutrino from dark matter signals.
We discuss the application of chiral effective field theory (EFT) to the calculation of nuclear responses for the scattering of weakly interacting massive particles (WIMPs) off nuclear targets. A consistent interpretation of the limits set by current and future direct-detection searches in terms of the WIMP parameter space requires the use of a series of EFTs to bridge the gap between the...
The dark matter direct detection landscape continues to shift, as solid-state detectors become ever more sensitive to minute depositions of energy. New synergies with quantum information science have broadened interest in the detectors themselves and created new collaborations. The next generation of solid-state detectors are forecasted to probe many square decades of unexplored dark matter...
I will describe what the fundamental, particle nature of the dark matter could possibly consist of and I will give an overview of strategies to search for dark matter as a particle, describe a few examples of possible hints of discovery, and outline ways forward in this exciting hunt.
In recent years xenon-based dark matter direct detection experiments have reached large enough target masses and low enough background levels to additionally probe rare double beta decays. Among these decays are the two-neutrino double electron capture ($2\nu$ECEC) of $^{124}$Xe as well as the hypothetical neutrinoless double beta decay ($0\nu\beta\beta$) of $^{136}$Xe. An observation of...
Most terrestrial Dark Matter searches employ Direct Detection by looking for recoils from elastic scattering of Weakly Interacting Massive Particles. However, if the weakly interacting Dark Matter particles exist and interact with ordinary matter, such a WIMP-Baryon interaction may disintegrate both the WIMP and the baryon nucleus in the process. Such an event would send out gamma-rays and...
The existing 4 sigma discrepancy between the neutron lifetime measurements in bottle versus beam experiments has been interpreted as a sign of neutrons decaying to dark particles with a 1% branching fraction. I will present a brief summary of this proposal, including particle physics models accommodating this scenario, as well as discuss related theoretical and experimental follow-ups. I will...
nEXO aims to utilize 5 tonnes of enriched xenon to search for $^{136}$Xe neutrinoless double beta decay, with a 90% CL half-life sensitivity of 1.35 x 10$^{28}$ yr. To reach this half-life sensitivity, which covers the parameter space associated with the inverted neutrino mass ordering, many improvements have been made towards understanding the production and reconstruction of light and charge...
Experimental hints for lepton-flavor universality violation in the muon's magnetic moment as well as neutral- and charged-current B-meson decays require Standard-Model extensions by particles such as leptoquarks that generically lead to unacceptably fast rates of charged lepton flavor violation and proton decay. We propose a model based on a gauged U(1)(Lμ−Lτ) that eliminates all these...
The Muon $g-2$ experiment at Fermilab has recently announced its measurement of the muon anomalous magnetic moment (AMM), which is in complete agreement with the long-standing tension previously reported by BNL. In addition, recent precise measurement of the fine-structure constant at Berkeley Lab shows somewhat disagreement with the electron AMM. Besides, evidence
for lepton flavor...
SND@LHC is a compact and stand-alone experiment to perform measurements with neutrinos produced at the LHC in a hitherto unexplored pseudo-rapidity region of 7.2 < 𝜂 < 8.6, complementary to all the other experiments at the LHC. The experiment is to be located 480 m downstream of IP1 in the unused TI18 tunnel. The detector is composed of a hybrid system based on an 800 kg target mass of...
Sterile neutrinos with keV-scale masses are popular candidates for warm dark matter. In the most straightforward case they are produced via oscillations with active neutrinos. We introduce effective self-interactions of active neutrinos and investigate the effect on the parameter space of sterile neutrino mass and mixing. Our focus is on mixing with electron neutrinos, which is subject to...
The CYGNO project aims to develop a gaseous high precision Time Projection Chamber with an optical readout for directional Dark Matter searches and solar neutrino spectroscopy at Laboratori Nazionali del Gran Sasso. CYGNO (a CYGNus TPC with Optical readout ) is part of the CYGNUS proto-collaboration, which aims to develop, at an international level, a Galactic Nuclear Recoil Observatory, a ton...
The Baksan Experiment on Sterile Transitions (BEST) probes the gallium anomaly and its possible connections to oscillations between active and sterile neutrinos. Based on the Gallium-Germanium Neutrino Telescope (GGNT) technology of the SAGE experiment, the BEST setup is comprised of two zones of liquid Ga metal target to explore neutrino oscillations on the meter scale. Any deficits in the...
The search for sterile neutrinos is among the brightest possibilities in our quest for understanding the microscopic nature of dark matter in our universe. These “mostly sterile” flavors are expected to be accompanied by heavy mass states, and thus their existence can be probed via momentum conservation with SM particles in radioactive decay. One way to observe these momentum recoil effects...
The Oscura experiment will deploy a very-large array of novel silicon skipper Charge Coupled Devices (CCDs) to search for low-mass dark matter (DM). Skipper-CCDs deliver sub-electron readout noise for millions of pixels, providing an ideal detector for low-threshold rare event searches for DM-electron interactions and coherent elastic neutrino-nucleus scattering. The Oscura instrument will...
I will give a review on recent progress of lattice QCD studies relevant for neutrino physics and dark matter searches.
We still do not know if the neutrino is a Majorana or a Dirac particle, i.e. if the neutrino is its own antiparticle or not. Also the absolute mass scale of the neutrino is unknown, only the relative scale is known from the neutrino-oscillation experiments. These unknown features of the neutrino can be
tackled by experiments trying to detect the neutrinoless double beta ($0\nu\beta\beta$)...
The search for neutrinoless double beta decay (0nubb) is the most sensitive known way to test for the Majorana nature of the neutrino. Observation of this process would confirm the neutrino to be its own antiparticle, a property with profound implications for particle physics and cosmology. If 0nubb it exists, however, it surely has a half life in excess of 10^26 yr, and perhaps even longer...
Neutrinoless double beta decay (0νββ-decay) is an important probe to study fundamental neutrino properties, e.g., Majorana nature, neutrino masses, CP phases, and non-standard neutrino interactions. The 0νββ-decay nuclear matrix elements (NMEs) are crucial for extracting the neutrino properties from the experimental transition rate. They can not be measured separately but must be evaluated...
KamLAND-Zen is searching for neutrinoless double-beta (0νββ) decay in Xe-136 using a xenon-loaded liquid scintillator. The KamLAND-Zen detector was recently upgraded with almost double the amount of xenon and an ultra-low radioactivity container. With almost 1-ton-year of $^{136}$Xe exposure, we are exploring the double-beta decay parameter space corresponding to the inverted hierarchy for...
Neutrinoless double beta decay (0nbb) experiments are the strongest probe of lepton number violation (LNV). While an observation of 0nbb will indicate that neutrinos are Majorana particles and will have profound implications on several open problems in particle physics, from the origin of neutrino masses to the generation of the matter-antimatter asymmetry in the Universe, the present and next...
Breakthroughs in our treatment of the many-body problem and nuclear forces are rapidly transforming modern nuclear theory into a true first-principles discipline. This allows us to address some of the most exciting questions at the frontiers of nuclear structure and physics beyond the standard model, such as the nature of dark matter and neutrino masses, as well as searches for violations of...
The origin of the relatively high solar system abundances of certain proton-rich isotopes in the $90 < A < 100$ mass range has been an enduring mystery in nuclear astrophysics. An attractive proposal to solve this problem is called the $\nu p$-process. This process could operate in a hot bubble of a core-collapse supernova, which is formed by a neutrino-driven outflow from the surface of the...
Non-zero rest masses give rise to neutrino flavor oscillations. In addition to the vacuum potential, flavor oscillations depend on the presence of in-medium weakly-interacting particles, including other neutrinos. Within a mean-field treatment of flavor transformation in dense astrophysics environments, this neutrino-neutrino self-interaction term can produce non-linear behavior in the...
MadDM is an automated numerical tool for the computation of dark-matter observables for generic new physics models based on the Monte Carlo generator MadGraph5_aMC@NLO. Notably, the code provides a comprehensive framework for the reinterpretation of direct and indirect detection searches. For instance, it allows the user to compute the fully differential nuclear recoil rates as well as the...
We are developing cryogenic single-crystal detectors with magnetic quantum sensors for sub-GeV DM and CEvNS detection. Magnetic quantum sensors deposited on crystal surfaces provide fast and efficient athermal-phonon collection, which could enable phonon-pulse shape discrimination (PPSD) of electron and nuclear recoil (ER and NR) signals for active background rejection in DM search and CEvNS...
Neutrino flavor transformation is expected to significantly change the nucleosynthetic output and thus electromagnetic signature of neutron star mergers. However, merger simulations do not currently account for flavor transformation self-consistently, and there is not enough information in the common moment method for radiation transport to definitively determine the presence or results of...
The development of low-threshold detectors for the study of coherent elastic neutrino-nucleus scattering and for the search for light dark matter calls for new calibration methods at sub-keV energies. We suggest this can be provided by the nuclear recoils resulting from the gamma emission following thermal neutron capture [1]. In particular, several MeV-scale single-gamma transitions induce...
Supernova simulations are yet to reliably account for collective neutrino oscillations. I’ll give an overview of all the ways that collisional processes are, or have been claimed to be, relevant to oscillation outcomes. Special emphasis will be placed on collisional instabilities, a newly discovered class of phenomena that might cause flavor transformation deep inside supernovae.
Neutrinos in compact-object environments, such as core-collapse supernovae, can experience various kinds of collective effects in flavor space, engendered by neutrino-neutrino interactions. These include "bipolar" collective oscillations, which are exhibited by neutrino ensembles where different flavors dominate at different energies. Considering the importance of neutrinos in the dynamics and...
Particle detectors based on liquid nobles, such as liquid argon (LAr), often require surfaces that shift the short vacuum ultraviolet (VUV) scintillation light towards the visible range and then reflect it. For the LAr instrumentation of the LEGEND-200 neutrinoless double-beta decay experiment, the wavelength shifter tetraphenyl butadiene (TPB) was in-situ evaporated on 14m2 of the reflector...
Neutrinos can experience collective flavor oscillations in core-collapse supernovae (CCSNe) and binary neutron star mergers (BNSMs) where they are copiously produced. Collective oscillations can spawn spontaneously in a dense neutrino gas and propagate in the form of flavor isospin waves. Although not well understood, this novel phenomenon can have various important ramifications in the...
Using the relativistic mean field (RMF) model, we present the neutrino interaction with the constituents of matter, considering the neutrino form factors that are obtained from the experiments and astrophysical constraints with the medium modifications of nucleon form factors. The effect of the constraint neutrino form factors and medium modification to the neutrino mean free path will be...
MicroBooNE is a liquid argon time projection chamber that operates in the Booster Neutrino Beam at Fermilab. The detector provides high-resolution imaging of neutrino interactions with a low threshold and full angular coverage. Thanks to a high event rate and several years of continuous operation, the MicroBooNE collaboration has obtained the world's largest dataset of neutrino-argon...
The MicroBooNE collaboration recently released a series of measurements aimed at investigating the nature of the excess of low energy electromagnetic interactions observed by the MiniBooNE collaboration. In this talk, we will present the latest results from both a search of single photons in MicroBooNE, as well as a series of three independent analyses leveraging different reconstruction...
Potassium-40 (40K) is a naturally-occurring radioactive isotope. It is a background in rare-event searches, plays a role in geochronology, and has a nuclear structure of interest to theorists. This radionuclide decays mainly by beta emission to calcium, and by electron-capture to an excited state of argon. The electron-capture decay of 40K directly to the ground state of argon has never been...
A vast body of astrophysical and cosmological observations point at the existence of an abundant form of matter interacting almost exclusively through gravity. A leading dark matter candidate is a weakly interacting massive particle, or WIMP, a thermal relic of the Big Bang, which has a sub-electroweak-scale self-annihilation cross section and a mass in the TeV/c$^2$-range. The motion of...
The stable iodine and caesium isotopes are the primary constituents of the
CsI[Na] neutrino detector operational from 2015 to 2019 at the SNS. Theoretically
computed cross sections for these nuclei are therefore of considerable
interest. The goal of the research outlined in this abstract was to obtain accurate
theoretical scattering cross sections along with nuclear de-excitation data
for...
Supernovae neutrinos serve as a direct probe of stellar interiors under extreme conditions. These neutrinos carry information important to open questions such as: the supernovae shock breakout mechanism, the stiffness of the nuclear equation of state, neutrino oscillation parameters and mass hierarchy, and much more. The next galactic supernova could produce hundreds to thousands of neutrino...
Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) both probe physics of the early universe. BBN is the intersection of nuclear astrophysics and early-universe cosmology, explaining the cosmic origin of the lightest elements, such as $^4$He and deuterium. Having precisely measured nuclear data as input, BBN predictions depend on the cosmic baryon-to-photon ratio $\eta =...
Next generation neutrino oscillation experiments are transitioning from discovery to an era of precision. With this change, precise cross sections are a necessity to maximize the potential physics reach of these experiments. The nucleon axial form factor is a vital ingredient in the nucleon amplitudes used to predict quasielastic scattering, the primary signal measurement process for DUNE,...
Dark matter particles could be unstable and decay, annihilate with each other, or subtly alter the processes within stellar interiors, imprinting characteristic signals in cosmic-ray and multi-wavelength observations. The central challenge is to distinguish these signatures from similar spectra produced by standard astrophysical processes, such as the life and death of stars and the...
Theories of light sub-GeV dark matter and dark sectors are well-motivated and are being pursued on a variety of experimental fronts. Accelerator experiments utilizing intense and energetic proton or lepton beams play a crucial role in this effort. In this talk, I will highlight the exciting opportunities to search for dark matter using fixed target and collider experiments, including...
We have entered a new era in astroparticle physics with the discovery of astrophysical, energetic neutrinos. Neutrinos, because they can travel nearly the entire universe undeflected and unimpeded, provide a new window into the non-thermal universe, one which we are only just beginning to reveal with the multi-messenger associations of neutrinos with blazers and tidal disruption events....
Coherent elastic neutrino nucleus scattering (CE$\nu$NS) means that a neutrino interacts with a nucleus as a whole, which enhances the cross section compared to other neutrino interactions. CE$\nu$NS is e.g. relevant in the modeling of Super Nova explosions and results in an inevitable background for dark matter experiments. It also opens up unique possibilities to search for BSM physics....
Enrico Fermi's 1934 paper, proposing the original weak-interation theory of beta decay, pointed out that the neutrino's mass would leave a signature in the endpoint of beta decay. 88 years later, the beta-decay endpoint remains our best source of neutrino-mass constraints. Better and better spectroscopy of the 18.6 keV endpoint of tritium has, for the past 30 years, provided the...