May 15 – 21, 2022
America/New_York timezone

[REMOTE] Inference of bipolar neutrino flavor oscillations near a core-collapse supernova, based on simulated measurements at Earth

May 20, 2022, 4:10 PM
25m
Arcade Ballroom: South

Arcade Ballroom: South

Oral talk - Theory or phenomenology Solar and supernova neutrinos: models and detection Parallel

Speaker

Prof. Eve Armstrong (New York Institute of Technology)

Description

Neutrinos in compact-object environments, such as core-collapse supernovae, can experience various kinds of collective effects in flavor space, engendered by neutrino-neutrino interactions. These include "bipolar" collective oscillations, which are exhibited by neutrino ensembles where different flavors dominate at different energies. Considering the importance of neutrinos in the dynamics and nucleosynthesis in these environments, it is desirable to ascertain whether an Earth-based detection could contain signatures of bipolar oscillations that occurred within a supernova envelope. To that end, we continue examining a cost-function formulation of statistical data assimilation (SDA) to infer solutions to a small-scale model of neutrino flavor transformation. SDA is an inference paradigm designed to optimize a model with sparse data. Our model consists of two mono-energetic neutrino beams emanating from a source and coherently interacting with each other and with a matter background, with radially-varying interaction strengths. We attempt to infer flavor transformation histories of these beams using simulated measurements of the flavor content at locations "in vacuum" (that is, far from the source), which could in principle correspond to earth-based detectors. Within the scope of this small-scale model, we found that: (i) based on such measurements, the SDA procedure is able to infer whether bipolar oscillations had occurred within the protoneutron star envelope, and (ii) if the measurements sample the full amplitude of the neutrino oscillations in vacuum, then the amplitude of the prior bipolar oscillations is well predicted. This result intimates that the inference paradigm can well complement numerical integration codes, via its ability to infer flavor evolution at physically inaccessible locations.

Primary authors

Prof. Eve Armstrong (New York Institute of Technology) Dr Amol Patwardhan (SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA)

Presentation materials