Dec 1 – 3, 2021
America/New_York timezone

Quantum Machine Learning for b-jet tagging at LHCb

Dec 2, 2021, 10:10 AM


Mr Davide Nicotra (University of Padova)


The identification of jets coming from heavy-flavour quarks, namely $b$- and $c$-quarks, is an important and non-trivial task at the LHC experiments. The classification of jets coming from $b$- and $\bar{b}$-quarks at the LHCb experiment allows to perform physics measurements, such as the forward-central charge asymmetry, to constrain the Standard Model predictions and/or find possible signals of New Physics. While recently Machine Learning algorithms have played an important role in exploiting the jet substructure, there is room for improvement in the jet identification by exploiting the particles correlations. In this paper, we present a brand new approach to identify the charge of jets produced by $b$-quarks, based on Quantum Machine Learning techniques. Data are embedded in a quantum circuit through a quantum feature map, a training procedure is performed, and the measurements of final state observables are mapped to a binary classification label. The models are trained and evaluated using LHCb Open Data obtained from LHCb detailed simulations and the tagging performance is compared with the Muon Tagging algorithm used so far at LHCb, and a classical Deep Neural Network model.

Primary authors

Dr Alessio Gianelle (INFN of Padova) Dr Carlos Vazquez Sierra (CERN) Mr Davide Nicotra (University of Padova) Mr Davide Zuliani (University and INFN of Padova) Prof. Donatella Lucchesi (University and INFN of Padova) Dr Eduardo Rodrigues (University of Liverpool) Dr Jacco de Vries (University of Maastricht) Dr Lorenzo Sestini (INFN of Padova)

Presentation materials