

Second-Generation Fermilab CFD Readout ASIC for LGAD sensors

Si Xie, Artur Apresyan, Carlos Perez Lara, Christopher Madrid, Irene Dutta, Aram Hayrapetyan, Sergey Los, Cristian Pena, Tom Zimmerman

CPAD Meeting 2024

Hardware-enabled CFD Readout for Timing Detectors

- Time-walk effect is well known & must be corrected for best performance
- Conventionally addressed with online or offline corrections via some type of LUT
- But under harsh radiation environments of future colliders, corrections may be time-dependent and messy!

 We propose a <u>hardware-enabled correction</u> via CFD built into the readout ASIC design

Fermilab CFD (FCFD) Chip

- Primary application is (AC-)LGAD sensors for MIP signals
 - But can be used for many types of precision timing detectors
- Previous version of the FCFD chip and performance presented at CPAD 2023: https://indico.slac.stanford.edu/event/8288/contributions/7544/

Published here: Xie et al., NIM-A V1056 168655 (2023) https://doi.org/10.1016/j.nima.2023.168655

FCFD v1: 2nd-Gen ASIC

New Features:

- 6-channel readout
- Design targets EIC TOF barrel detector AC-LGADs
 - 1cm long AC-LGAD, 500 μm pitch, 50 μm thickness
- Wider dynamic range
- Sensitivity to smaller signals
- Additional signal amplitude readout for position measurement

Barrel TOF AC-LGAD

FCFD v1: Charge Injection Characterization

- Use internal LGAD-like signal charge injection mechanism (same as v0)
- Achieved 11 ps time resolution with input capacitance at 3.5 pF
- Analog output linear over range of input charge between 7-60 fC

Fermilab Testbeam Facility Setup

- Use 120 GeV protons to characterize
 FCFDv1 in realistic operating conditions
- Tracking provided by 5 layers of strip silicon sensors and 2 layers of pixels
- Reference time measured by MCP-PMT (~10ps resolution)
- Maintain temperature at 20 C

Beam Test Results

- Two-strip efficiency at 100%
- Initial noise levels were high
- Comparator misled by fake noise hits

- Temporary solution:
 - Added 7-pF capacitor in series to the AC-LGAD to mitigate noise (at cost of signal strength reduction)
- Also tested FCFDv1 with 2-pixel DC-LGAD to verify design performance specifications

Single -channel efficiency

two-strip efficiency

Beam Test Results

- Confirmed performance on DC-LGAD matches design specifications
 - Achieved 32 ps total resolution
 (for amplitude ~300mV)
 - No time-talk observed

160

Bias voltage [V]

Beam Test Results

- Confirmed performance on DC-LGAD matches design specifications
 - Achieved 32 ps total resolution (for amplitude ~300mV)
 - No time-talk observed
- AC-LGAD resolution measured to be 52 ps
 - For smaller signal amplitude 130
 mV due to the temporary noise fix

Summary

- Presented performance of 2nd-Gen FCFD ASIC optimized for EIC AC-LGAD applications
- For DC-LGAD, performance matches design specifications
- For AC-LGAD, larger noise observed and temporary fix resulted in slightly worse timing performance due to attenuated signal size

Next steps:

- Working on re-design of RC-coupling, accounting for sensor parameters
- Design of full size FCFD v2 ASIC with EIC-DAQ compatible readout

Backup