A Measurement of the $^{18}\text{O}(\alpha,\text{n})^{21}\text{Ne}$ Reaction for R Matrix Applications

Rebecca Toomey
Collaborators!

- Rutgers University
 - Gwen Seymour
 - Harry Sims
 - Jolie Cizewski
- Oak Ridge National Laboratory
 - Mike Febbraro
 - Steve Pain
 - Kelly Chipps
- University of Notre Dame
 - James deBoer
 - August Gula
 - Luis Morales
 - Sebastian Aguilar
 - Samuel Henderson
- Los Alamos National Laboratory
 - Aaron Couture

Work supported in part the U.S. Department of Energy, NNSA, Office of Nuclear Physics and the National Science Foundation.
Why $^{18}\text{O}(\alpha,n)^{21}\text{Ne}$?

- Historically there has been significant interest in this reaction
 - Measurements spanning over 60 years!
 - Varying levels of uncertainty – not well characterized over the full range
 - Angle-integrated total cross sections – no branching ratios

- Implications far reaching
 - Nuclear astrophysics
 - Nuclear security
 - Rare-event physics
 - Geophysics
$^{18}\text{O}(\alpha,n)^{21}\text{Ne}$ in Nuclear Astrophysics

- **s-process in massive stars**
 - $^{18}\text{O}(\alpha,n)^{21}\text{Ne}$ produces the bulk of neutrons during explosive He-shell burning
 - $^{18}\text{O}(\alpha,n)^{21}\text{Ne}$ reaction important in innermost He shell
 - Reaction rate affects production of ^{15}N

- **Massive star ejecta**
 - Inner He-rich zones play a role in formation of supernova carbonaceous dust
 - Spatially correlated “hot spots” of ^{18}O in low-density graphite grains
 - Variation from terrestrial abundance up to 98,000%!

Modified from Bojazi and Meyer (2014)

\(^{18}\text{O}(\alpha,n)^{21}\text{Ne}\) in Nuclear Nonproliferation

- Verification of nuclear material relies on accurate modelling of neutron emission processes
 - \((\alpha,n)\) reactions contribute a significant neutron source
 - Neutron source calculations for low-burnup fuels, such as uranium oxide, rely on nuclear data
 - JENDL only comprehensive evaluation of \((\alpha,n)\)

- For neutron source calculations, \(^{210}\text{Po}\) alpha decay at 5.3 MeV
 - Between 3.5 – 5.13 MeV JENDL on average overestimates cross section by 1.7%
 - As the energy increases, the discrepancy between evaluation and data gets bigger
Previous R Matrix work on 18O

• R matrix:
 – Phenomenological method of accurately describing low energy cross sections in nuclear reactions

• Previous 18O R matrix work by Pigni (Pigni et al. (2020))
 – Neutron energy spectrum of an enriched 18O plutonium oxide matrix (Anderson (1967)) compared to R matrix evaluations

• What data is needed to improve R matrix calculations?
 – Partial cross sections
 – Detailed angular distributions
 – If possible, additional reaction channels
Measurement of $^{18}\text{O}(\alpha,\text{n})^{21}\text{Ne}$

- Experimental campaign in Nov 2019 at Notre Dame Nuclear Science Laboratory
 - 5 MV single-ended Sta. Ana accelerator
 - 2-8 MeV He beam
- 97% enriched ^{18}O water anodized onto a tantalum backing
 - \sim10 μg/cm2 ^{18}O target
- 10 ODeSA detectors every 7.5° on a swing arm
 - 10-point angular distribution at every point
 - 20-point angular distribution on resonances
- 2 HPGe detectors at 55° and 125° to measure secondary γ-rays
What do we expect to see?

- 21Ne has reasonably high level density above 2 MeV in excitation energy

- Over the energy range we measured, 2 – 8 MeV:
 - Energetically possible to populate many states
 - Neutron detection threshold ~500 keV
 - At highest incident alpha energy, can see up to 12th excited state
 - Due to detection resolution, closely spaced states (< 350 keV) will not be individually resolved
\(^{18}\text{O}(\alpha,\gamma)^{21}\text{Ne}\) Cross Sections

- Gamma ray partial cross sections extracted for \(^{18}\text{O}(\alpha,\gamma)^{21}\text{Ne}\) (blue)
 - Partial cross sections for 1\(^{\text{st}}\), 2\(^{\text{nd}}\), 3\(^{\text{rd}}\) and 5\(^{\text{th}}\)}
$^{18}\text{O}(\alpha,n\gamma)^{21}\text{Ne}$ Cross Sections

- Comparing to JENDL partial cross sections
 - JENDL is the most commonly used evaluation of (α,n) reactions
- JENDL makes assumptions when calculating partial cross sections
 - JENDL uses Hauser-Feshbach statistical model to predict cross sections – not valid for light nuclei
 - 9/2$^+$ state considered to be in Hauser-Feshbach continuum, no comparison available
$^{18}\text{O}(\alpha,\alpha')^{18}\text{O}$ Cross Sections

- Improved R matrix constraint from inclusion of additional reaction channels
- Significant inelastic yield seen in experiment
- For previous R matrix analyses inelastic cross section not included
$^{18}\text{O}(\alpha,\alpha'\gamma)^{18}\text{O}$ Cross Sections

- Able to extract inelastic cross section for 1st and 2nd excited state in ^{18}O
- No experimental data to compare to directly
- Provides additional channels to constrain R matrix fit
Neutron Spectroscopy

• ORNL Deuterated Spectroscopic Array - ODeSA
• 10 deuterium-enriched liquid scintillator detectors
 – Utilize spectrum unfolding method of neutron spectroscopy
• Designed and built in-house at ORNL
• Array fully characterized at Ohio University
 – Light response and response matrix
 – Absolute efficiency
 – Systematically defined PSD
Spectrum unfolding – how does it work?

- Using MLEM and the detector response matrix, \bar{R}, a neutron energy spectra can be extracted
 - Able to extract spectroscopic information independent of ToF

\[
\bar{S} = \bar{R} \bar{x}
\]

- \bar{S} = Measured light spectrum
- \bar{R} = Response matrix
- \bar{x} = Neutron energy spectrum
$^{18}\text{O}(\alpha,n)^{21}\text{Ne}$ Spectra

- Due to light response resolution, as neutron energy increases separation of peaks becomes more difficult
 - Response matrix can be constrained to extract closely spaced peaks
 - Experiment scheduled at LANL to improve response matrix >5 MeV

\[
\begin{align*}
\text{E}_\alpha &= 2619 \text{ keV} \\
3/2^+ \text{ gnd} \quad \text{1/2}^+ \text{ 1st ex.} \\
\end{align*}
\]

\[
\begin{align*}
\text{E}_\alpha &= 7583 \text{ keV} \\
1/2^+ \text{ 1st ex.} \quad \text{3/2}^+ \text{ gnd} \\
\end{align*}
\]
$^{18}\text{O}(\alpha, n)^{21}\text{Ne}$ Neutron Partial Differential Cross Sections

- Extraction of neutron yield curves and partial cross sections underway
 - Ground state (n_0) and first excited state (n_1)
- Differing shapes for n_0 and n_1 suggests changing contributions from excited states
 - Analysis ongoing for energies up to ~ 8 MeV
 - Further angular distribution analysis to follow
\(^{18}\text{O}(\alpha, n)^{21}\text{Ne} \) Neutron Partial Differential Cross Sections

- First excited state cross section measured using two detector technologies
 - HPGe detectors measure gamma rays with gamma spectroscopy
 - Deuterated scintillator detectors measure neutrons with spectrum unfolding
- Remarkably good agreement between neutrons and gamma rays
 - Differences explained by angular distributions
 - Measured at different angles
$^{18}\text{O}(\alpha,n)^{21}\text{Ne}$ Cross Sections

- JENDL resonance structure reasonable
 - Still resonances below JENDL
 - n_1 seems reasonable, but n_0 contribution appears underestimated at lower energies
Impacts on future R matrix analyses

- What data is needed to improve R matrix calculations?
 - Partial cross sections
 - Detailed angular distributions
 - Additional reaction channels

- Partial cross sections measured
 - using both neutrons and secondary gamma rays

- Detailed neutron angular distributions allow for further constraint

- Inelastic cross section for alpha scattering on 18O measured

M.T. Pigni et al., Prog. Nucl. Energy 118 (2020)
Summary and Outlook

• Active interest in $^{18}\text{O}(\alpha,n)^{21}\text{Ne}$ reaction for over 60 years
 – Impacts many sub-fields of nuclear physics

• Neutron source calculations for nonproliferation rely on nuclear data

• Measured $^{18}\text{O}(\alpha,n)^{21}\text{Ne}$ reaction at Notre Dame in November 2019
 – Extracted $^{18}\text{O}(\alpha,n\gamma)^{21}\text{Ne}$ partial differential cross sections
 – Extracted $^{18}\text{O}(\alpha,\alpha'\gamma)^{18}\text{O}$ partial differential cross sections
 – Preliminary neutron partial cross sections

• Next steps
 – Extract full neutron partial cross sections via spectrum unfolding
 – Extract full angular distributions